PhD Student

Mathematical Statistics

University of California, Davis

We need 70% more food by 2050

The world's human population is expected to grow past 9.7*10^9 by 2050 , and our global temperature is expected to have increased by at least 1.5C relative to preindustrial levels by 2100. Our agricultural production is expected to fall short of global demand in the coming years as the global population swells and living standards rise. Agricultural technology must keep pace if we are to sustain 10B people.

I focus on climate impacts on global food security. By developing and implementing statistical theory and methods, I work to enable computational agronomy and climate science.


How do we use genomic, sensor, and high throughput phenotype data to build better models and predictions for biological systems? Recent advances in computing, mathematics, molecular and systems biology are enabling the kind of cross-scale, cross-discipline synergy these insights need to emerge.

Climate change

Here at Davis, I'm building collaborations between plant science, agricultural economics, and statistics to understand where our crops will grow in increasingly unstable environments. Currently, I'm working on simulations of global crop distributions and how these distributions react to different climate scenarios.


Peoples' genomes, their locations, and conversations are all private. This privacy must be respected by practitioners, enforced by government, and watched diligently by third parties. A good primer can be found here. In addition to privacy concerns, considerably more pressing is the proper democratization of new data technologies.